Predicting the mechanical properties of biopolymer gels using neural networks trained on discrete fiber network data

نویسندگان

چکیده

Biopolymer gels, such as those made out of fibrin or collagen, are widely used in tissue engineering applications and biomedical research. Moreover, naturally assembles into gels vivo during wound healing thrombus formation. Macroscale biopolymer gel mechanics dictated by the microscale fiber network. Hence, accurate description can be achieved using representative volume elements (RVE) that explicitly model discrete networks microscale. These RVE models, however, cannot efficiently to macroscale due challenges computational demands multiscale coupling. Here, we propose use an artificial, fully connected neural network (FCNN) capture behavior models. The FCNN was trained on 1100 subjected 121 biaxial deformations. stress data from RVE, together with total energy condition incompressibility surrounding matrix, were determine derivatives unknown strain function respect deformation invariants. During training, loss modified ensure convexity symmetry its Hessian. A general coded a user material subroutine (UMAT) software Abaqus. In this work, finite element simulations our UMAT. We anticipate work will enable further integration machine learning tools mechanics. It also improve modeling biological materials characterized structure.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

Predicting Phishing Websites using Neural Network trained with Back-Propagation

Phishing is increasing dramatically with the development of modern technologies and the global worldwide computer networks. This results in the loss of customer’s confidence in e-commerce and online banking, financial damages, and identity theft. Phishing is fraudulent effort aims to acquire sensitive information from users such as credit card credentials, and social security number. In this ar...

متن کامل

Stochastic Reservoir Simulation Using Neural Networks Trained on Outcrop Data

Extensive outcrop data or photographs of present day depositions or even simple drawings from expert geologists contain precious structural information about spatial continuity that is beyond the present tools of geostatistics essentially limited to two-point statistics (histograms and covariances). A neural net can be learned to collect multiple point statistics from various training images, t...

متن کامل

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

modification of nanoclay for improving the physico-mechanical properties of dental adhesives

هدف اصلی این مطالعه تهیه یک سامانه نوین چسب عاجی دندانی بر پایه نانورس پیوند شده با پلی متاکریلیک اسید، نانورس پیوند شده با پلی اکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی متاکریلیک اسید، مخلوط نانوسیلیکا و نانورس پیوند شده با پلی اکریلیک اسید و نانورس پیوند شده با کیتوسان اصلاح شده با گلایسیدیل متاکریلات است. پیوند پلی متاکریلیک اسید و پلی اکریلیک اسید بر ری سطح نانورس در حضور و ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computer Methods in Applied Mechanics and Engineering

سال: 2021

ISSN: ['0045-7825', '1879-2138']

DOI: https://doi.org/10.1016/j.cma.2021.114160